372 research outputs found

    Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism.

    Get PDF
    CD4(+) T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i) that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5(+) cells, and (ii) that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4(+) compartment. To test these hypotheses we measured in vivo turnover rates of CD4(+) T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p) and disappearance (d*) rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143-569 cells/ul) participated. CCR5-expression defined a CD4(+) subpopulation of predominantly CD45R0(+) memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5(+) vs CCR5(-); healthy controls; P<0.01). Conversely, CXCR4 expression defined CD4(+) T-cells (predominantly CD45RA(+) naive cells) with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5(+)CD45R0(+)CD4(+) memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05), naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9) or X4-tropic (n = 4). Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively). Our data are most consistent with models in which CD4(+) T-cell loss is primarily driven by non-specific immune activation

    Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases

    Get PDF
    Monitoring the T cell receptor (TCR) repertoire in health and disease can provide key insights into adaptive immune responses, but the accuracy of current TCR sequencing (TCRseq) methods is unclear. In this study, we systematically compared the results of nine commercial and academic TCRseq methods, including six rapid amplification of complementary DNA ends (RACE)-polymerase chain reaction (PCR) and three multiplex-PCR approaches, when applied to the same T cell sample. We found marked differences in accuracy and intra- and inter-method reproducibility for T cell receptor α (TRA) and T cell receptor β (TRB) TCR chains. Most methods showed a lower ability to capture TRA than TRB diversity. Low RNA input generated non-representative repertoires. Results from the 5' RACE-PCR methods were consistent among themselves but differed from the RNA-based multiplex-PCR results. Using an in silico meta-repertoire generated from 108 replicates, we found that one genomic DNA-based method and two non-unique molecular identifier (UMI) RNA-based methods were more sensitive than UMI methods in detecting rare clonotypes, despite the better clonotype quantification accuracy of the latter

    Changes in JC virus-specific T cell responses during natalizumab treatment and in natalizumab-associated progressive multifocal leukoencephalopathy

    Get PDF
    Progressive multifocal leukoencephalopathy (PML) induced by JC virus (JCV) is a risk for natalizumab-treated multiple sclerosis (MS) patients. Here we characterize the JCV-specific T cell responses in healthy donors and natalizumab-treated MS patients to reveal functional differences that may account for the development of natalizumab-associated PML. CD4 and CD8 T cell responses specific for all JCV proteins were readily identified in MS patients and healthy volunteers. The magnitude and quality of responses to JCV and cytomegalovirus (CMV) did not change from baseline through several months of natalizumab therapy. However, the frequency of T cells producing IL-10 upon mitogenic stimulation transiently increased after the first dose. In addition, MS patients with natalizumab-associated PML were distinguished from all other subjects in that they either had no detectable JCV-specific T cell response or had JCV-specific CD4 T cell responses uniquely dominated by IL-10 production. Additionally, IL-10 levels were higher in the CSF of individuals with recently diagnosed PML. Thus, natalizumab-treated MS patients with PML have absent or aberrant JCV-specific T cell responses compared with non-PML patients, and changes in T cell-mediated control of JCV replication may be a risk factor for developing PML. Our data suggest further approaches to improved monitoring, treatment and prevention of PML in natalizumab-treated patients

    Viral population estimation using pyrosequencing

    Get PDF
    The diversity of virus populations within single infected hosts presents a major difficulty for the natural immune response as well as for vaccine design and antiviral drug therapy. Recently developed pyrophosphate based sequencing technologies (pyrosequencing) can be used for quantifying this diversity by ultra-deep sequencing of virus samples. We present computational methods for the analysis of such sequence data and apply these techniques to pyrosequencing data obtained from HIV populations within patients harboring drug resistant virus strains. Our main result is the estimation of the population structure of the sample from the pyrosequencing reads. This inference is based on a statistical approach to error correction, followed by a combinatorial algorithm for constructing a minimal set of haplotypes that explain the data. Using this set of explaining haplotypes, we apply a statistical model to infer the frequencies of the haplotypes in the population via an EM algorithm. We demonstrate that pyrosequencing reads allow for effective population reconstruction by extensive simulations and by comparison to 165 sequences obtained directly from clonal sequencing of four independent, diverse HIV populations. Thus, pyrosequencing can be used for cost-effective estimation of the structure of virus populations, promising new insights into viral evolutionary dynamics and disease control strategies.Comment: 23 pages, 13 figure

    Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state

    Get PDF
    The T cell compartment must contain diversity in both T cell receptor (TCR) repertoire and cell state to provide effective immunity against pathogens. However, it remains unclear how differences in the TCR contribute to heterogeneity in T cell state. Single cell RNA-sequencing (scRNA-seq) can allow simultaneous measurement of TCR sequence and global transcriptional profile from single cells. However, current methods for TCR inference from scRNA-seq are limited in their sensitivity and require long sequencing reads, thus increasing the cost and decreasing the number of cells that can be feasibly analyzed. Here we present TRAPeS, a publicly available tool that can efficiently extract TCR sequence information from short-read scRNA-seq libraries. We apply it to investigate heterogeneity in the CD8+ T cell response in humans and mice, and show that it is accurate and more sensitive than existing approaches. Coupling TRAPeS with transcriptome analysis of CD8+ T cells specific for a single epitope from Yellow Fever Virus (YFV), we show that the recently described ‘naive-like’ memory population have significantly longer CDR3 regions and greater divergence from germline sequence than do effector-memory phenotype cells. This suggests that TCR usage is associated with the differentiation state of the CD8+ T cell response to YFV

    Decreased level of recent thymic emigrants in CD4+ and CD8+T cells from CML patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>T-cell immunodeficiency is a common feature in cancer patients, which may relate to initiation and development of tumor. Based on our previous finding, to further characterize the immune status, T cell proliferative history was analyzed in CD4+ and CD8+ T cells from chronic myeloid leukemia (CML) patients.</p> <p>Methods</p> <p>Quantitative analysis of δRec-ψJα signal joint T cell receptor excision circles (sjTRECs) was performed in PBMCs, CD3+, CD4+ and CD8+T cells by real-time PCR, and the analysis of 23 <it>TRBV-D1 </it>sjTRECs was performed by semi-nested PCR. Forty eight CML cases in chronic phase (CML-CP) were selected for this study and 17 healthy individuals served as controls.</p> <p>Results</p> <p>The levels of δRec-ψJα sjTRECs in PBMCs, CD3+, CD4+, and CD8+ T cells were significantly decreased in CML patients, compared with control groups. Moreover, the numbers of detectable <it>TRBV </it>subfamily sjTRECs, as well as the frequency of particular <it>TRBV-BD</it>1 sjTRECs in patients with CML were significantly lower than those from healthy individuals.</p> <p>Conclusions</p> <p>We observed decreased levels of recent thymic emigrants in CD4+ and CD8+ T cells that may underlay the persistent immunodeficiency in CML patients.</p

    CD4+ T Cell Depletion, Immune Activation and Increased Production of Regulatory T Cells in the Thymus of HIV-Infected Individuals

    Get PDF
    Mechanisms by which HIV affects the thymus are multiple and only partially known, and the role of thymic dysfunction in HIV/AIDS immunopathogenesis remains poorly understood. To evaluate the effects of HIV infection on intra-thymic precursors of T cells in HIV-infected adults, we conducted a detailed immunophenotypic study of thymic tissue isolated from 7 HIV-infected and 10 HIV-negative adults who were to undergo heart surgery. We found that thymuses of HIV-infected individuals were characterized by a relative depletion of CD4+ single positive T cells and a corresponding enrichment of CD8+ single positive T cells. In addition, thymocytes derived from HIV-infected subjects showed increased levels of activated and proliferating cells. Our analysis also revealed a decreased expression of interleukin-7 receptor in early thymocytes from HIV-infected individuals, along with an increase in this same expression in mature double- and single-positive cells. Frequency of regulatory T cells (CD25+FoxP3+) was significantly increased in HIV-infected thymuses, particularly in priorly-committed CD4 single positive cells. Our data suggest that HIV infection is associated with a complex set of changes in the immunophenotype of thymocytes, including a reduction of intrathymic CD4+ T cell precursors, increased expression of activation markers, changes in the expression pattern of IL-7R and enrichment of T regulatory cells generation

    Immunodominant HIV-1 Cd4+ T Cell Epitopes in Chronic Untreated Clade C HIV-1 Infection

    Get PDF
    Background: A dominance of Gag-specific CD8+ T cell responses is significantly associated with a lower viral load in individuals with chronic, untreated clade C human immunodeficiency virus type 1 (HIV-1) infection. This association has not been investigated in terms of Gag-specific CD4+ T cell responses, nor have clade C HIV-1–specific CD4+ T cell epitopes, likely a vital component of an effective global HIV-1 vaccine, been identified. Methodology/Principal Findings: Intracellular cytokine staining was conducted on 373 subjects with chronic, untreated clade C infection to assess interferon-gamma (IFN-γ) responses by CD4+ T cells to pooled Gag peptides and to determine their association with viral load and CD4 count. Gag-specific IFN-γ–producing CD4+ T cell responses were detected in 261/373 (70%) subjects, with the Gag responders having a significantly lower viral load and higher CD4 count than those with no detectable Gag response (p<0.0001 for both parameters). To identify individual peptides targeted by HIV-1–specific CD4+ T cells, separate ELISPOT screening was conducted on CD8-depleted PBMCs from 32 chronically infected untreated subjects, using pools of overlapping peptides that spanned the entire HIV-1 clade C consensus sequence, and reconfirmed by flow cytometry to be CD4+ mediated. The ELISPOT screening identified 33 CD4+ peptides targeted by 18/32 patients (56%), with 27 of the 33 peptides located in the Gag region. Although the breadth of the CD4+ responses correlated inversely with viral load (p = 0.015), the magnitude of the response was not significantly associated with viral load. Conclusions/Significance: These data indicate that in chronic untreated clade C HIV-1 infection, IFN-γ–secreting Gag-specific CD4+ T cell responses are immunodominant, directed at multiple distinct epitopes, and associated with viral control

    Impact of long-term viral suppression in CD4+ recovery of HIV-children on Highly Active Antiretroviral Therapy

    Get PDF
    BACKGROUND: The effects of HAART may differ between children and adults because children have a developing immune system, and the long-term immunological outcome in HIV-infected children on HAART is not well-known. A major aim of our study was to determine CD4+ evolution associated with long-term VL control during 4 years of observation on HAART. METHODS: We carried out a retrospective study on a cohort of 160 vertically HIV-infected children. It was carried out from 1996 to 2004 in six large Spanish pediatric referral hospitals. We compared 33 children who had long-term VL suppression (VL ≤400 copies/ml) in the first 12 months of follow-up and maintained that level throughout follow-up (Responders-group), and 127 children with persistently detectable VL in spite of ART switches (Non-Responders-group). RESULTS: We observed a quick initial and significant increase in CD4(+ )counts from the baseline to 12 months on HAART in both groups (p < 0.01). The Non-Responders group sustained CD4+ increases and most of these children maintained high CD4(+ )level counts (≥25%). The Non-Responders group reached a plateau between 26% and 27% CD4(+ )at the first 12 months of follow-up that remained stable during the following 3 years. However, the Responders group reached a plateau between 30% and 32% CD4(+ )at 24, 36 and 48 months of follow-up. We found that the Responders group had higher CD4(+ )count values and higher percentages of children with CD4(+ )≥25% than the Non-Responders group (p < 0.05) after month 12. CONCLUSION: Long-term VL suppression in turn induces large beneficial effects in immunological responses. However, it is not indispensable to recover CD4(+ )levels
    • …
    corecore